Discrete nonnegativity for nonlinear cooperative parabolic PDE systems with non-monotone coupling
نویسندگان
چکیده
Discrete nonnegativity principles are established for finite element approximations of nonlinear parabolic PDE systems with mixed boundary conditions. Previous results of the authors are extended such that diagonal dominance (or essentially monotonicity) of the nonlinear coupling can be relaxed, allowing to include much more general situations in suitable models.
منابع مشابه
Discrete maximum principles for nonlinear parabolic
Discrete maximum principles are established for finite element approximations 10 of nonlinear parabolic PDE systems with mixed boundary and interface conditions. The 11 results are based on an algebraic discrete maximum principle for suitable ODE systems. 12
متن کاملA Block Monotone Domain Decomposition Algorithm for a Nonlinear Singularly Perturbed Parabolic Problem
This paper deals with discrete monotone iterative algorithms for solving a nonlinear singularly perturbed parabolic problem. A block monotone domain decomposition algorithm based on a Schwarz alternating method and on a block iterative scheme is constructed. This monotone algorithm solves only linear discrete systems at each time level and converges monotonically to the exact solution of the no...
متن کاملDifference-Quadrature Schemes for Nonlinear Degenerate Parabolic Integro-PDE
We derive and analyze monotone difference-quadrature schemes for Bellman equations of controlled Lévy (jump-diffusion) processes. These equations are fully non-linear, degenerate parabolic integro-PDEs interpreted in the sense of viscosity solutions. We propose new “direct” discretizations of the non-local part of the equation that give rise to monotone schemes capable of handling singular Lévy...
متن کاملar X iv : 0 90 6 . 14 58 v 1 [ m at h . A P ] 8 J un 2 00 9 DIFFERENCE - QUADRATURE SCHEMES FOR NONLINEAR DEGENERATE PARABOLIC INTEGRO - PDE
We derive and analyze monotone difference-quadrature schemes for Bellman equations of controlled Lévy (jump-diffusion) processes. These equations are fully non-linear, degenerate parabolic integro-PDEs interpreted in the sense of viscosity solutions. We propose new “direct” discretizations of the non-local part of the equation that give rise to monotone schemes capable of handling singular Lévy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 139 شماره
صفحات -
تاریخ انتشار 2017